If it's not what You are looking for type in the equation solver your own equation and let us solve it.
31x-7x^2=12
We move all terms to the left:
31x-7x^2-(12)=0
a = -7; b = 31; c = -12;
Δ = b2-4ac
Δ = 312-4·(-7)·(-12)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(31)-25}{2*-7}=\frac{-56}{-14} =+4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(31)+25}{2*-7}=\frac{-6}{-14} =3/7 $
| 2/3n+8=1/3(2n+24) | | -9x+15=33 | | 1/6w+80=7w+80 | | -4(6-5x)=36 | | (4x+25)=(1/x) | | 4x(x-3)=2x+4 | | 31x-7x^2=0 | | 0.1r-1=6 | | -5d-10=9-7+7d | | 12n=2n+6 | | 8c+2=-8+7c | | -10m-4=m | | x+x²=158 | | -1+8t=3t+9 | | 3x-6=2x6 | | -8+2z=9+7z-2 | | -7f+7=3-5f-8 | | 3/5(a-6}=15 | | 8-(2b+3)=b-16 | | 4(x-5)=-2x+40 | | 1/5(k-3=3/4 | | 4d-3.50=32.50-2d | | 4d-3.50=32.50+2d | | 28x-1=27x+2 | | -10=-4+7m | | 6=11+z/3 | | 2(4d-3.50)=32.50 | | (X+9)+(x+6)=195 | | x5x+41=66 | | 2(x+2)=(x+4)+18 | | 4d-3.50+2=32.50 | | 7x-3(5x+2)=-94 |